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Abstract. We solve the problem of two-dimensional flow of a viscous fluid over a rectangular approximation
of an etched hole. In the absence of inertia, the problem is solved by a technique involving the matching of
biorthogonal infinite eigenfunction expansions in different parts of the domain. Truncated versions of these series
are used to compute a finite number of unknown coefficients. In this way, the stream function and its derivatives
can be determined in any arbitrary point. The accuracy of the results and the influence of the singularities at the
mask-edge corners is discussed. The singularities result in a reduced convergence of the eigenfunction expansions
on the interfaces of the different regions. However, accurate results can be computed for the interior points without
using a lot of computational time and memory. These results can be used as a benchmark for other methods which
will have to be used for geometries involving curved boundaries. The effect of hole size on the flow pattern is also
discussed. These flow patterns have a strong influence on the etch rate in the different regions.
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1. Introduction

The mathematical modelling of flows over open cavities has been a topic of research for at
least three decades. These investigations are often concerned with the transport of heat or mass
from the cavity to the flow outside or, alternatively, from the outer flow to the cavity walls.
Some early examples are [1, 2, 3, 4, 5].

In wet-chemical etching a special variety of this problem emerges, namely that of the flow
past a partially covered cavity (Figure 1). In etching, a fluid containing aggressive chemicals,
the etchant, is brought into contact with a solid that is to be etched. Often, the purpose of the
etching process is to dissolve only certain parts of the solid, so that holes, trenches or grooves
are produced. To achieve the required result, the solid is covered with a layer of non-etchable
material which is called the mask or photo-resist. The etchant is then allowed to dissolve
the solid through the holes left in the mask. Since sideways etching and etching in depth are
phenomena which occur simultaneously, a shape such as that depicted in Figure 1 can be
expected to result from a process of this kind.

In etching we are usually concerned with very small holes, downwards from about 100
microns. Since flow velocities within such small holes can never be very large and will
decrease with hole size, these flows are most likely of the low-Reynolds-number kind. On
the other hand, the diffusion coefficients of species dissolved in the fluid,i.e. in the case of
wet-chemical etching, are smaller than the kinematic viscosity by a factor which is typically
of the order of 104–105. Therefore, in spite of the creeping-flow character of the flow, the
transport of dissolved species can still be convection-dominated, even for very small holes.

Kuiken [6] and Kuiken and Tijburg [7] showed that the nature of the flow inside the cavity
strongly determines the etch rates. It is the trapped-eddy structure which wholly determines
the etching process. In [6] a model involving interconnecting convection-diffusion boundary
layers was developed for such processes. Using Levêque-type approximations and invoking
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Figure 1. Etch hole with undercut.

transformations of a kind pioneered by Lighthill [8], the author of [6] was able to derive a
set of coupled integral equations, with all the information about the flow field hidden in the
transformed variables.

Since, in the case of forced flow, the flow is not influenced by the spatial distribution
of the dissolved species, except perhaps through a weak concentration dependence of the
viscosity that we shall disregard here, one first step towards the understanding of convection-
assisted etching will be to describe the flow within a complicated geometry of a kind as
shown in Figure 1. A full description of the etching process will involve a succession of such
shapes, each of which follows from the flow field in a quasi-stationary manner, whereby the
above-mentioned system of integral equations provides the link towards the moving-boundary
condition.

In this paper we shall be solely concerned with the fluid-flow aspects of problems of the
afore-mentioned kind. Since an accurate numerical simulation of fluid flows in a complicated
geometry such as that of Figure 1 is by no means simple, it is useful to consider different
methods and slightly modified geometries for this problem. In a series of papers on slow
viscous flow Joseph and coworkers [9, 10, 11] showed that accurate semi-analytical solutions
can be obtained for geometries involving straight edges only. They used a method involving
biorthogonal series expansions. In particular. Trogdon and Joseph [12] consider a geometry
which corresponds to Figure 2 withf equal to zero.

Clearly, the difference between the geometry considered by Trogdon and Joseph and the
geometry considered here is the presence of the overhanging mask edges. In this paper we
derive solutions for flows inside the rectangular cavity of Figure 2 and driven by a uniform-
shear flow outside. We study the influence of the singularities on the mask-edge corners with
respect to the accuracy of the solution. We also study the influence of the number of terms
included in the biorthogonal series solutions on the accuracy.

Recently, mass transport in multiple-eddy systems has been a subject of intense research,
particularly in the context of etching. In a series of papers [13, 14, 15] Alkire and coworkers
considered various aspects of this problem in both rectangular and circular cut-outs. These
studies give insight into the nature of the flow inside these cut-outs and in the mass-transport
properties of such systems in the absence of masks. Alkireet al.recognise the boundary-layer
character of mass transport and apply a method of the kind first put forward in [6] in their
mathematical model.
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Figure 2. Geometry and definition of parameters and subregions.

Shin and Economou [16, 17] employ a finite-element calculation to simulate the shape
evolution of cavities in the presence of thick masks. They consider both forced and natural
convection. Their paper is rich in graphical material. However, their method does not exploit
the boundary-layer character of mass transport. Other papers which are of interest in this
context are [18] and [19]. The first considers flow and convection in triangular trenches and
uses a finite-element package, while the second focusses on convection-diffusion in rectangular
slots and employs a combination of boundary and spectral elements to arrive at an accurate
solution. Again, masks are absent in these studies.

Thus, the purpose of this paper is to provide solutions for creeping flows over and inside
partially covered cavities by means of biorthogonal eigenfunction expansions. We consider
the accuracy of our computations, and relate this to the singularities at the mask-edge corners.
Other methods of solution,e.g.boundary-element or finite-element methods, which will have
to be used in more general cases involving curved boundaries, can be compared with these
solutions. In order to facilitate such comparisons, we shall list a series of pertinent results for
future reference.

In the next section, we give the mathematical formulation of the fluid-flow problem. In
Section 3 we show how the flow domain is subdivided into a finite number of rectangular
sub-domains. In each of these sub-domains the solution is then formulated formally in terms
of a biorthogonal series expansion [9, 10, 11]. These formulations contain coefficients which
can be fully determined by the boundary conditions (Section 4) and matching conditions
(Section 5). With the help of biorthogonal functions a linear system for the coefficients is
constructed in Section 6. The accuracy of our calculations is described in Section 7, and some
results are shown in Section 8.

2. Mathematical formulation

We consider the two-dimensional geometry as shown in Figure 2. We compute the flow inside
a rectangular etched hole resulting from the moving upper plate. This upper plate is needed for
our solution method, but, clearly, a uniform shear flow can be simulated with such a plate. We
apply the incompressible Navier–Stokes equations to our physical domain. These equations
are scaled by the model parameters and the inertial terms are neglected on account of the
Reynolds number being small. The resulting equations are

�rp+ �r
2u = 0 (2.1)
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and the continuity equation is

r � u = 0: (2.2)

Herep denotes the pressure,u the velocity vector and� the kinematic viscosity. Taking the
curl of (2.1) we can rewrite the equations as a single biharmonic equation

r

4
	 = 0; (2.3)

where the stream function	 is defined as

u =
@	

@y
; v = �

@	

@x
;

whereu andv are the velocities inx andy direction respectively. The boundary conditions

@	

@n
= 0 and 	 = constant; (2.4)

describe the no-slip condition on the walls, the constant being equal to a positive value on the
moving plate and zero elsewhere. The hole sizes are defined in Figure 2, where all parameters
are scaled with the semi-width of the inletW . This scaling parameter is chosen because,
during etching, it remains the same.

Solutions of (2.3) are the so-called Papkovich–Fadle eigenfunctions [20, 21]. These eigen-
functions arise from separation of variables in a natural way. In the next section we describe
how the solution of our problem can be formulated in terms of these eigenfunctions.

3. Solution procedure

The flow domain is divided into seven subregions as shown in Figure 2. For each of these
regions boundary conditions can be used to reduce the number of unknown coefficients in
the eigenfunction expansions. For each subregion the resulting series of eigenfunctions are
given below. In the next sections the remaining boundary conditions are used, together with
matching conditions for the region interfaces, to compute the unknown coefficients. After an
integration procedure described in Section 6, this results in a linear system of equations for
the coefficients.

The only remaining problem is that each series contains an infinite number of coefficients.
Therefore, we truncate the series, which leads to a finite number of linear equations for the
unknown coefficients.

As described above, we first give the series of eigenfunctions for each subregion. For the
second region, the solution takes the form

	
II
(x; y) = f(y) +

1X

k=�1

Qk

bP 2
k

b�k(y)
coshbPkx
coshbPk

+

1X

k=�1

Q�
k

bP �2
k

b��k(y)
coshbP �

k
x

coshbP �
k

+

1X

k=�1

Ak

P 2
k

�k(x)
sinhPk(y �D=W )

sinhPkD=W

+

1X

k=�1

Bk

P 2
k

�k(x)
coshPk(y �D=W )

coshPkD=W
; (3.1)
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where

�k(x) = Pk[sinPk cosPkx� x cosPk sinPkx] (3.2)

and

b�k(y) = Pk

�
sinPk cosPk

�
y �D=W

D=W

�

�

�
y �D=W

D=W

�
cosPk sinPk

�
y �D=W

D=W

��
: (3.3)

Here, fork > 0, thePk are the first-quadrant complex roots of

sin 2Pk + 2Pk = 0; jP1j < jP2j < � � � < jPkj; P�k = P k:

Further

b��k(y) = P �k

�
cosP �k sinP �k

�
y �D=W

D=W

�

�

�
y �D=W

D=W

�
sinP �k cosP �k

�
y �D=W

D=W

��
; (3.4)

where, fork > 0, theP �
k

are the first-quadrant complex roots of

sin 2P �k � 2P �k = 0; jP �1 j < jP �2 j < � � � < jP �k j; P �
�k = P

�

k:

Also

f(y) = 1
4y

2:

The functionf(y) is the Couette-part of the stream function as caused by the moving upper
plate in the absence of the hole. Robbins and Smith [22] explain how the values ofPk andP �

k

can be computed. The solution in region I must be matched with the solution in region II on
the linex = �1. In region I the solution takes the form

	I(x; y) = f(y) +
1X

k=�1

CkbP 2
k

b�k(y)ebPk(x+1) +
1X

k=�1

C�
kbP �2
k

b��k(y)ebP �

k
(x+1): (3.5)

The solution in region III is the mirror image of the solution in region I

	III (x; y) = 	I(�x; y): (3.6)

These solutions satisfy the boundary conditions on the upper plate and on the upper mask
edges. For the other regions, the solutions are given in the order of the region numbers: In
region IV the solution is given by

	IV (x; y) =
1X

k=�1

Yk

P 2
k

�k(x)
sinhPk(�(y + g=W ))

sinhPkg=W

+
1X

k=�1

Zk

P 2
k

�k(x)
coshPk(�(y + g=W ))

coshPkg=W
: (3.7)
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Region V

	
V
(x; y) =

1X
k=�1

TkeP 2
k

e�k(y)coshePk(x+ 1+ f=W )

coshePkf=W
+

1X
k=�1

VkeP 2
k

e�k(y)sinh ePk(x+ 1+ f=W )

sinh ePkf=W
+

1X
k=�1

T �
keP �2
k

e��k(y)cosheP �
k
(x+ 1+ f=W )

cosheP �
k
f=W

+

1X
k=�1

V �
keP �2
k

e��k(y)sinh eP �
k
(x+ 1+ f=W )

sinh eP �
k
f=W

: (3.8)

The solution in region VII is the mirror image of the solution in region V

	
VII
(x; y) = 	

V
(�x; y): (3.9)

Region VI

	
VI
(x; y) =

1X
k=�1

SkeP 2
k

e�k(y)coshePkx
coshePk

+

1X
k=�1

S�
keP �2
k

e��k(y)cosheP �
k
x

cosheP �
k

+

1X
k=�1

Dk

P 2
k

�k(x)
sinhPk(�(y + 2g=W + d=W ))

sinhPkd=W

+

1X
k=�1

Ek

P 2
k

�k(x)
coshPk(�(y + 2g=W + d=W ))

coshPkd=W
: (3.10)

In these formulas, the functionse�k(y) ande��
k
(y) are given by

e�k(y) = �k

�
�(y + 2g=W + d=W )

d=W

�
; and e��k(y) = ��k

�
�(y + 2g=W + d=W )

d=W

�

and thus

bPk = Pk

D=W
; bP �k = P �

k

D=W
; ePk = Pk

d=W
; eP �k = P �

k

d=W
: (3.11)

By substituting solutions (3.1), (3.5), (3.7), (3.8) and (3.10) in (2.3) we may verify that the
given solutions are biharmonic. Summarising, we have derived for each subregion a number of
infinite series of unknown coefficients, using the general solutions of the biharmonic equation
and some of the boundary conditions. In the next section, the remaining boundary conditions
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are used to derive relations between the coefficients. In Section 5, the matching conditions
will be used to complete the system of equations.

4. Boundary conditions

Now, we show how the remaining boundary conditions are used to formulate relations between
the unknown coefficients. As an example of such a boundary condition, we consider the series
for the second region. For this region, (3.1) must satisfy the boundary conditions on the upper
(moving) plate

	II (x;2D=W ) = f(2D=W ) (4.1)

and

@	II

@y
(x;2D=W ) = f 0(2D=W ): (4.2)

Substitution of (3.1) in (4.1) and (4.2) gives the following conditions for the coefficientsAk

andBk

1X
k=�1

[Ak +Bk]
�k(x)

P 2
k

= 0 (4.3)

and
1X

k=�1

[Ak +Bk]�k(x)

+

1X
k=�1

�
Ak

�
cothPkD=W � Pk

Pk

�
+Bk

�
tanhPkD=W � Pk

Pk

��
�k(x) = 0: (4.4)

In the same way, boundary conditions in region V and region VI can be derived.
In the next section, we show how the matching conditions on the region interfaces lead

to additional relations between the unknown coefficients. From the resulting set of equations,
the coefficients can be completely determined.

5. Matching conditions

We require the continuity of velocities and stresses across common boundaries between the
subregions. It is not hard to show that the velocities and stresses are continuous across the
boundary if the stream functions on the left(	L) and right(	R) side of this boundary satisfy

	L = 	R;
@	L

@n
=
@	R

@n
;

@2	L

@n2 =
@2	R

@n2 ;
@3	L

@n3 =
@3	R

@n3 : (5.1)

We take the region interface between region I and region II as an example. Substitution of
(3.5) and (3.1) in (5.1) leads to the following relations between the coefficients of the series
in these regions. For the continuity of the stream function this gives

1X
k=�1

[Ck �Qk]
b�k(y)bP 2

k

+

1X
k=�1

[C�

k �Q�

k]
b��
k
(y)bP �2
k

= 0: (5.2)
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For the first derivatives, this results in

1X

k=�1

bPk[Ck +Qk tanhbPk]
b�k(y)
bP 2
k

+
1X

k=�1

bP �

k [C
�

k +Q�

k tanh bP �

k ]
b��
k
(y)
bP �2
k

= 0: (5.3)

The equation for the second derivatives becomes

1X

k=�1

[Ck �Qk]b�k(y) +
1X

k=�1

[C�

k �Q�

k]
b��k(y)

=
1X

k=�1

Bk

P 2
k

�00k(1)
coshPk(y �D=W )

coshPkD=W
+

1X

k=�1

Ak

P 2
k

�00k(1)
sinhPk(y �D=W )

sinhPkD=W
: (5.4)

For the third derivatives we can derive the following equation

1X

k=�1

bPk[Ck +Qk tanhbPk]b�k(y) +
1X

k=�1

bP �

k [C
�

k +Q�

k tanh bP �

k ]
b��k(y)

= �
1X

k=�1

Bk

P 2
k

�000k (1)
coshPk(y �D=W )

coshPkD=W

�

1X

k=�1

Ak

P 2
k

�000k (1)
sinhPk(y �D=W )

sinhPkD=W
: (5.5)

In the same way, the matching conditions for the other interfaces can be derived. The resulting
equations contain the unknown series of coefficients, and are functions of one variable along
each of the interfaces. In the next section this last dependence is removed in the following way.
First, the equations are rewritten in a vector form. Subsequently, a biorthogonal integration
method is applied to these modified equations.

6. Biorthogonality

In the previous section, all matching conditions were used to derive a set of equations, from
which the unknown infinite series of coefficients can completely be determined. However,
each of the foregoing equations represents the expansion of a function of one variable in
different sets of eigenfunctions. By using biorthogonality properties of these eigenfunctions,
we can simplify the relations.

To this end the equations are expressed in a vector form which will facilitate the imple-
mentation of biorthogonality. Following our examples of the previous section, we give the
definitions to reformulate the problems vectorial form. We define the vectors [12]

�k1(s) = �k(s); �k2(s) = �00
k
(s)=P 2

k
;

b�k1(s) = b�k(s); b�k2(s) = b�00k(s)= bP
2
k
;

b��k1 (s) = b��
k
(s); b��k2 (s) = b��00

k
(s)= bP �2

k
:

Similar vectors can be defined for the other series expansions. With these vectors, the
equations can be transformed into vector forms. For the example (4.3) and (4.4) the vector
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form becomes
1X

k=�1

[Ak +Bk]

"
�k1(x)

�k2(x)

#
+

1X
k=�1

�
Ak

�
cothPkD=W � Pk

Pk

�

+Bk

�
tanhPkD=W � Pk

Pk

��"
�k1(x)

0

#
=

�
0
0

�
: (6.1)

For (5.2) and (5.4) the vector form is written as
1X

k=�1

[Ck �Qk]

" b�k1(y)b�k2(y)
#
+

1X
k=�1

[C�

k �Q�

k]

" b��k1 (y)b��k2 (y)

#

=

2
664

1X
k=�1

Bk

P 2
k

�00k(1)
coshPk(y �D=W )

coshPkD=W

0

3
775

+

2
664

1X
k=�1

Ak

P 2
k

�00k(1)
sinhPk(y �D=W )

sinhPkD=W

0

3
775 : (6.2)

For (5.3) and (5.5)
1X

k=�1

bPk[Ck �Qk tanh bPk]
" b�k1(y)b�k2(y)

#
+

1X
k=�1

bP �

k [C
�

k +Q�

k tanh bP �

k ]

" b��k1 (y)b��k2 (y)

#

= �

2
664

1X
k=�1

Bk

P 2
k

�000k (1)
coshPk(y �D=W )

coshPkD=W

0

3
775

�

2
664

1X
k=�1

Ak

P 2
k

�000k (1)
sinhPk(y �D=W )

sinhPkD=W

0

3
775 : (6.3)

To obtain the expressions above we differentiated (4.3), (5.2) and (5.4) twice. For the
other matching and boundary conditions a similar procedure is followed. The biorthogo-
nality properties for the eigenfunctions appearing in (6.1) to (6.3) are summarised below.
These properties are derived by Smith in [23]Z 1

�1
A�k(s) � n(s)ds = kn�nk;

Z 2D=W

0
Ab�k(s) � b n(s)ds = knD=W�nk;

Z 2D=W

0
Ab��k(s) � b �n(s)ds = k�nD=W�nk;
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where

A =

"
0 �1

1 2

#
;

kn = �4 cos4Pn;

k�n = �4 sin4P �

n ;

�k(s) =

"
�k1(s)

�k2(s)

#

and n(s) and �n(s) are the vectors containing the even and odd adjoint eigenfunctions,
respectively. The adjoint eigenfunctions are given by Joseph and Sturges [10] as

 n1 (s) = �n1(s)� 2 cosPn cosPns =  n(s);  n2 (s) = �
 00n(s)

P 2
n

= �n1(s);

 �n1 (s) = ��n1 (s) + 2 sinP �

n sinP �

ns =  �n(s);  �n2 (s) = �
 �00n (s)

P �2
n

= ��n1 (s):

The adjoint eigenfunctions,b n(s); b �n(s) bear the same relationship tob�n(s) and b��n(s)
as n(s) and �n(s) do to�n(s) and��n(s). To implement biorthogonality, we use the
operators defined below

Z 1

�1
A(�) � n(s)ds; (6.4)

Z 2D=W

0
A(�) � b n(s)ds; (6.5)

Z 2D=W

0
A(�) � b �n(s)ds: (6.6)

The same kind of operator can be defined for the other basic functions. These operators are
applied to the vector equations. As an example, the following results can be obtained. The
operator (6.5) is applied to (6.2) and (6.3). This results in

Cn �Qn =
1X

k=�1

Bk

knP
2
k

�00k(1)�( bPn; Pk) (6.7)

and

Cn +Qn tanhbPn = �

1X
k=�1

Bk

knP
2
k
bPn�

000

k (1)�( bPn; Pk); (6.8)

where

�( bPn; Pk) = 1
coshPkD=W

Z 2D=W

0
coshPk(y �D=W ) b n2 (y)dy:
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The operator (6.6) is applied to the same linear equations, which results in

C�

n �Q
�

n =
1X

k=�1

Ak

k�nP
2
k

�00k(1)�
�( bP �

n ; Pk) (6.9)

and

C�

n +Q�

n tanhbP �

n = �
1X

k=�1

Ak

k�nP
2
k
bP �

n

�000k (1)�
�( bP �n ; Pk); (6.10)

where

��( bP �n ; Pk) = 1
sinhPkD=W

Z 2D=W

0
sinhPk(y �D=W ) b �n2 (y)dy:

Next the operator (6.4) is applied to (6.1), which results in

An +Bn +
1X

k=�1

Ak

�
cothPkD=W � Pk

Pk

�
Gnk

kn

+
1X

k=�1

Bk

�
tanhPkD=W � Pk

Pk

�
Gnk
kn

= 0; (6.11)

where

Gnk =

Z 1

�1
 n2 (x)�

k
1(x)dx:

In the same way as presented above, 16 linear systems can be derived for the 16 unknown series
of coefficients. To solve these equations, these systems have to be truncated. The remaining
linear systems of equations are solved by substitution. In the next section, the accuracy of the
computations is discussed. Some results are presented in Section 8.

7. Accuracy

Before presenting the results in the next section, we first discuss the two main sources of error
in our computations.

From the series, the second derivative normal to an arbitrary interface can be computed.
However, the series for this derivative converge only slowly on the region interface. Using
extrapolation from the interior of a region, we can compute the second derivative more
accurately from a small number of terms. The series on both sides of the interface result in two
values for each interface point, which differ in the order of 10 percent. It should be noted that
these discontinuities are not in contradiction with the matching conditions, since the matching
conditions are not fulfilled point-wise but only in a global sense. The discontinuities are caused
by the singularities at the mask-edge corners. The behaviour of such a singularity is shown
in Figure 3, where the vorticity around a mask-edge corner is plotted. As we will show, the
convergence behaviour of the series of coefficients is determined by these singularities. The
singular behaviour near the mask-edge corners is computed with the procedure described by
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Figure 3. The vorticity@v=@x� @u=@y plotted around a mask-edge corner.

Moffatt [24]. In this procedure a solution is computed for the biharmonic equation in plane
polar co-ordinates(r; �) of the form

	 = r�f�(�); (7.1)

where� is any number, real or complex, which may be called the exponent of the solution.
This solution is computed for the flow around the mask-edge corners, which gives for the first
values for the exponent�

�1 ' 1�54448 �4 ' 3�30133+ 0�31584i;

�2 ' 1�90853 �5 ' 3�97184+ 0�37393i;

�3 ' 2�62926+ 0�23125i �6 ' 4�64142+ 0�41879i:

The smallest value describes the asymptotic behaviour at the corners. With the first three
exponents a function is constructed along the first region interface, which is the interface
between region I and II. The function is constructed in such a way that it also satisfies the
boundary conditions. This function is expanded in a series of the form (3.5). The convergence
of the coefficients of this series shows the same behaviour as we found in our computations
for the biharmonic problem.

These calculations give rise to doubts about the quality of the method, since the discontin-
uous second derivatives were used to construct the matching conditions for the computation
of the unknown coefficients. Similar problems were found in a computation with a matching
problem for the Laplace equation, where the first derivative showed discontinuities at the
region interfaces [25]. However, since for the Laplace problem the analytical solution was
known, it could also be shown, that the solution in the interior can be computed with any
desired accuracy. In [26] similar problems appeared in a driven cavity, where the biharmonic
problem was solved by a spectral multigrid method. For the interior points, an accurate solution
was computed, while the accuracy of the computations decreased near the boundaries.
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Table 1. Convergence behaviour of velocities at arbitrary points as a function of the truncation
numberN . See Figure 4 for definition of the points.

Point 1 Point 2 Point 3 Point 4 Point 5

x �1�5 0�5 �0�5 �2�5 �1�0
y 0�5 1�5 �1�5 �2�5 �3�5

N u (10�1 ms�1) v (10�3 ms�1) v (10�3 ms�1) u (10�6 ms�1) v (10�5 ms�1)

80 2�54605 3�84677 4�86971 �5�58589 �2�05654
120 2�54614 3�84938 4�86927 �5�58662 �2�06597
160 2�54619 3�85066 4�86906 �5�58697 �2�07075
240 2�54623 3�85191 4�86886 �5�58730 �2�07561
320 2�54625 3�85251 4�86876 �5�58746 �2�07810

As an example of the convergence behaviour of our computations in the interior of the
problem area, some velocity components are computed in a number of points with an increas-
ing truncation number. Figure 4 shows the chosen points. In this calculation, all etch-hole
parameters are equal to unity. The results of these computations are given in Table 1. We
can conclude that the series do converge for the interior points (points 1–4). In contrast the
series converge only very slowly for point 5. This difference in convergence behaviour can
be explained by considering the mathematical form of the series. In the interior points the
argument of the exponent is negative, which leads to a rapid decrease for increasingk. On
the other hand, at the region interfaces the argument of the exponent is equal to zero, which
makes the convergence behaviour much slower. The convergence of the series in the interior
points can even be improved by methods described in the second part of this section.

Figure 4. The points (1–5) where a velocity component
is computed.

Figure 5. Coefficient C(N)
1 as a function of the

truncation number, without and with Richardson
extrapolation.

The second source of inaccuracies we consider is the inaccuracy caused by the truncation of
the infinite linear systems. The truncation of the linear systems has two effects: the remaining
parts of the series are neglected, and due to the truncation the coefficients that are computed
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Table 2. Convergence behaviour of velocities at arbitrary points computed with the Richardson
extrapolation method for the coefficients as functions of the truncation numberN .

Point 1 Point 2 Point 3 Point 4 Point 5

N u (10�1 ms�1) v (10�3 ms�1) v (10�3 ms�1) u (10�6 ms�1) v (10�5 ms�1)

80 2�54632 3�85461 4�86840 �5�58809 �2�04813
120 2�54632 3�85449 4�86843 �5�58801 �2�06103
160 2�54631 3�85440 4�86845 �5�58796 �2�06793
240 2�54631 3�85434 4�86846 �5�58793 �2�07405

Table 3. Final values for the velocities computed with the help of both extrapolation methods.

Point 1 Point 2 Point 3 Point 4 Point 5

N u (10�1 ms�1) v (10�3 ms�1) v (10�3 ms�1) u (10�6 ms�1) v (10�5 ms�1)

1000 2�546310 3�854340 4�868463 �5�587932 �2�077489

contain an error. We start with a consideration of the inaccuracy of the coefficients. In Figure 5
we can see the coefficientC(N)

1 as a function of the truncation numberN . It can be seen from
this Figure that

C
(N)
1 = C

(1)
1 + �=N + o(1=N): (7.2)

This information can be used to obtain more accurate results by an application of Richardson’s
extrapolation method. The second line in Figure 5 gives the results of this extrapolation as
a function of the truncation numberN and from this example it is clear that the values of
the coefficients are improved by this extrapolation. The higher-order terms in expansion (7.2)
cannot easily be removed, since the leading term is not polynomial in 1=N . This extrapolation
method is applied to compute the velocities in the same points as in Table 1. From Table 2
it can be concluded that the convergence for the interior points is better after application of
Richardson’s extrapolation. However, the convergence in the point at the interface does not
improve. Next we consider the neglected remaining part of the infinite series. In Figure 6 the
extrapolated coefficientsCk are plotted logarithmically as a function of the coefficient index
k. This Figure gives reason to assume that the coefficients contain some asymptotic behaviour
of the form

Ck = � � k��: (7.3)

While the firstCk values do not show this asymptotic behaviour, and the last terms are affected
by the truncation of the series, we use the coefficients fromk = 10 tok = 100 for extrapolation
of theCk values with the help of (7.3) to approximateCk for largek. In our case, the value of
� varies from 1�4 to 1�7.

With the help of this second extrapolation method, the velocities are computed again. In
Table 3 the values of the velocities at the points chosen in Figure 4 and computed with the
help of both extrapolation methods are given. From this Table it can be concluded, that the
values in the interior of the subregions are improved by the use of both extrapolation methods.
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Figure 6. Logarithmic plot of the (Richardson) extrapolated coefficientsCk as a function ofk.

However, these extrapolation methods do not improve the accuracy of the computations on
the region interfaces (point 5 in our examples).

Although the coefficients in the eigenfunction expansion converge slowly, the solution can
be calculated accurately in the interior of the sub-domains after application of the two extra-
polation techniques. Therefore, the results obtained can be used to validate other numerical
methods for Stokes flow.

8. Results

In this section we compute the stream function for different flow geometries with the help of
both extrapolation methods.

In an etching situation the upper plate is absent. To simulate this the distance from the
upper plate to the etch hole(D=W ) is chosen equal to 20. With this distance fixed, we can
vary the etch-hole parameters(g=W; f=W andd=W ).

The first configuration we present (Figure 7) is a contour plot of the stream function with
g=W = 0�1; f=W = 1�0 andd=W = 1�0. In this picture we see one vortex in the central
region of the hole, and two vortices at the left and right-hand sides of the etch hole. The stream
function in these last two vortices is very small in comparison with the stream function in the
central vortex. This indicates that there is almost no fluid flow at the left and right-hand sides
of the etch hole. Since etching is dependent on the transport of the dissolved metal, the etching
process on the vertical boundaries of the etch hole proceeds very slowly in comparison with
etching in the downward direction for this particular geometry.

As a second example we consider a geometry with a relative thick mask in comparison
with the widthW of the etch pattern. Figure 8 shows that two vortices arise between the mask
edges. The stream function indicates that there is almost no fluid flow in the etched cavity. We
can conclude that a relative thick mask decelerates the etching process.
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Figure 7. Contour plots for given values of the stream function for an etched hole withg=W = 0�1; d=W = 1�0
andf=W = 1�0.

Figure 8. Contour plots for given values of the stream
function for an etched hole withg=W = 2�0; d=W =

1�0 andf=W = 1�0.

Figure 9.Contour plots for given values of the stream
function for an etched hole withg=W = 0�1; d=W =

2�0 andf=W = 0�1.

What can also be seen from this picture, is that the side eddies do not quite extend to
the reentrant corner, a property already shown by Takematsu [1]. The flow field near the
corners of the geometry is dominated by the singularity solutions (7.1). While the solutions
are considered in a small region around a corner, only the first terms have to be taken into
account. These terms do not become zero in this region except on the walls; these functions
do not have a dividing streamline.

When the depth-width ratio of the etched hole is increased (see Figure 9) we see two
vortices in the hole. The stream-function values show that the fluid flow is negligible in the
lowest vortex. Hence the etching in the vertical direction is much slower than in the horizontal
direction.

From Figure 7 and 9 it can be concluded that the most appropriate rectangular approxi-
mation of a natural etching geometry looks like the one shown in Figure 10. If the width is
larger than the height the reduced etching in the horizontal direction results in a relatively
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Figure 10. Contour plots for given values of the stream function for an etched hole withg=W = 0�1; d=W = 2�0
andf=W = 1�0.

deeper etch hole and vice versa. In the geometry in Figure 10 there is only one central vortex
which implies that the etch rate will be approximately the same for the vertical and horizontal
directions.

Summarising, the method used can be applied to rectangular etch-hole geometries and gives
satisfying results for the stream function and the stream velocities. The truncation of the infinite
series causes inaccuracies. These inaccuracies can be cured by two extrapolation methods.
However, the most important sources of inaccuracy in the answers are the singularities on the
mask-edge corners. It is possible to solve this problem by adding the leading singular terms
to the series expansion, as in the work of Kelmanson [27] and the work of Bohou [28] on the
boundary-element method. This is beyond the scope of this paper and will be a subject for
future research.
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